Download Algebraic topology notes by Botvinnik B. PDF

By Botvinnik B.

Show description

Read Online or Download Algebraic topology notes PDF

Similar topology books

Fixed Point Theory for Lipschitzian-type Mappings with Applications

In recent times, the mounted element concept of Lipschitzian-type mappings has quickly grown into an immense box of analysis in either natural and utilized arithmetic. It has develop into the most crucial instruments in nonlinear useful research. This self-contained booklet presents the 1st systematic presentation of Lipschitzian-type mappings in metric and Banach areas.

Controlled Simple Homotopy Theory and Applications

Lecture notes in arithmetic No. 1009

A New Direction in Mathematics for Materials Science

This booklet is the 1st quantity of the SpringerBriefs within the arithmetic of fabrics and offers a complete advisor to the interplay of arithmetic with fabrics technology. The anterior a part of the e-book describes a specific heritage of fabrics technological know-how in addition to the interplay among arithmetic and fabrics in heritage.

Extra resources for Algebraic topology notes

Sample text

Theorem of Seifert and Van Kampen. 2] for detailes. Let G1 , G2 be two groups with system of generators A1 , A2 and relations R1 , R2 respectively. A group with a system of generators A1 ∪ A2 (disjoint union) and system of relations R1 ∪ R2 is called a free product of G1 and G2 and is denoted as G1 ∗ G2 . 17. Prove that the group Z2 ∗ Z2 contains a subgroup isomorphic to Z and (Z2 ∗ Z2 )/Z ∼ = Z2 . 18. Let X , Y be two CW -complexes. Prove that π1 (X ∨ Y ) = π1 (X) ∗ π1 (Y ), where the base points x0 ∈ X and y0 ∈ Y are identified with a base point in X ∨ Y .

By definition of CW -complex, it is the same as to construct an extension of the map ψ = F (n) ◦ g : (Dn+1 × {0}) ∪ (S n × I) −→ Y to a map of the cylinder ψ ′ : Dn+1 × I −→ Y . Let η : Dn+1 × I −→ (Dn+1 × {0}) ∪ (S n × I) be a projection map of the cylinder Dn+1 × I from a point s which is near and a bit above of the top side Dn+1 × {1} of the cylinder Dn+1 × I , see the Figure below. 0 1 00000 000 00000 000 11111 111 11111 111 0 1 00000 11111 000 111 00000 11111 000 00000 000111 00000 000 11111 111 11111 111 00000 000111 00000 000 11111 111 00000 11111 00011111 111 00000 11111 000 111 00000 11111 000111 111 00000 11111 000 00000 11111 000 111 00000 11111 000 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 11111 000 111 00000 11111 000 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 00000 11111 000111 111 00000 11111 000 111 00000 11111 000 111 00000 11111 000 111 00000 11111 000 111 00000 11111 000 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 00000 000111 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 111 00000 000 00000 000 11111 111 11111 00000 000111 00000 000 11111 111 11111 111 The map η is an identical map on (Dn+1 × {0}) ∪ (S n × I).

6. 5. Two coverings T1 −→ X and T2 −→ X are isomorphic if and only if for any (1) (2) (1) (2) −1 two points x0 ∈ p−1 1 (x0 ), x0 ∈ p2 (x0 ) the subgroups (p1 )∗ (π1 (T1 , x0 )) (p1 )∗ (π1 (T2 , x0 )) belong to the same conjugation class. 8. 5. Let H ⊂ G be a subgroup. Recall that a normalizer N (H) of H is a maximal subgroup of G such that H is a normal subgroup of that group. The subgroup N (H) of the group G may be described as follows: N (H) = g ∈ G | gHg −1 = H . NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 57 Recall also that the group π1 (X, x0 ) acts on the set Γ = p−1 (x0 ), and Γ may be considered as a right π1 (X, x0 )-set; the subgroup p∗ (π1 (T, x0 )) is the “isotropy group” of the point x0 ∈ p−1 (x0 ).

Download PDF sample

Rated 4.97 of 5 – based on 13 votes